Pulmonary Complications of Dyskeratosis Congenita

Don Hayes, Jr., MD, MS
Nationwide Children’s Hospital
The Ohio State University
Conflicts & Disclosures

• No conflicts of interests

• No relevant disclosures

• Funding
 – Chest Foundation
 – Cystic Fibrosis Foundation
 – NIH
 – Ohio Solid Organ Transplant Consortium
Lung Development

- **Embryonic**
 - Human: Weeks 3–7 (E9-13)
 - Rat: E9-12
 - Mouse: E9-12

- **Pseudoglandular**
 - Human: Weeks 5–17 (E13-18)
 - Rat: E13-18
 - Mouse: E12-17

- **Canalicular**
 - Human: Weeks 16–26 (E18-20)
 - Rat: E17-18
 - Mouse: E18-PN5

- **Sacular**
 - Human: Weeks 24–38 (E20-T)
 - Rat: T-PN28
 - Mouse: PN5-28

- **Alveolar**
 - Human: Weeks 36 to 3 years
 - Rat: 38 Weeks
 - Mouse: 22 Days

*E = Embryonic, PN = Postnatal, T = Term
Anatomy of the Respiratory System

- Nose
- Pharynx
- Larynx
- Trachea
- Bronchi
- Lungs
- Vasculature
- Interstitium
Lungs
Function of the Respiratory System

• Passageways to the lungs purify, warm, & humidify the incoming air
• Oversees gas exchanges between the blood & external environment
• Exchange of gasses takes place within the alveoli
Lungs

• Occupy most of the thoracic cavity
 – Apex is near the clavicle (collar bone)
 – Each lung is divided into lobes by fissures
 • Left lung – two lobes
 • Right lung – three lobes
Respiratory Divisions

- Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioli
- Terminal bronchioli
Bronchioles

- Smallest branches of the bronchi
- All but the smallest branches have cartilage
- Terminal bronchioles end in alveoli
Respiratory Zone

• Structures
 – Respiratory bronchioli
 – Alveolar duct
 – Alveoli

• Site of gas exchange
Alveoli

- Structure of alveoli
 - Alveolar duct
 - Alveolar sac
 - Alveolus

- Gas exchange takes place within the alveoli across the respiratory membrane
- Covered with pulmonary capillaries
Respiratory Membrane
Gas Exchange

• Gas crosses the respiratory membrane by diffusion
 – Oxygen enters the blood
 – Carbon dioxide enters the alveoli
• Macrophages add protection
• Surfactant coats gas-exposed alveolar surfaces
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age years</th>
<th>Features of DC trial</th>
<th>Aplastic anaemia</th>
<th>Telomere length</th>
<th>Gene, mutation</th>
<th>TERT, c.2264C>T</th>
<th>Danazol, dexamethasone</th>
<th>HCT indication</th>
<th>Age at HCT years</th>
<th>HCT preparation, GWAID prophylaxis</th>
<th>At PAMR diagnosis</th>
<th>Age at last follow-up years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>L</td>
<td>Mild</td>
<td>VL</td>
<td>TERT, c.2264C>T</td>
<td>p. R756C</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Dyspnoea, hypoxia,</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>None</td>
<td>Moderate</td>
<td>VL*.</td>
<td>RET/LL. c.2264C>A</td>
<td>p.D734N</td>
<td>Danazol</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>None</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>None</td>
<td>Moderate</td>
<td>VL*.</td>
<td>TERT, c.946A</td>
<td>p. T469K</td>
<td>Danazol</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No symptoms,</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>NCI 291-1</td>
<td>18</td>
<td>Moderate</td>
<td>VL</td>
<td>Compound int. PARN</td>
<td>p.19A</td>
<td>C</td>
<td>Severe thrombocytopenia</td>
<td>HCT</td>
<td>21</td>
<td>Fludarabine, CSA/MMF</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>NCI 216-1</td>
<td>8</td>
<td>Severe</td>
<td>VL</td>
<td>NTR1, gene deletion</td>
<td>Unknown</td>
<td>Danazol</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Dyspnoea on exertion,</td>
<td>NT</td>
</tr>
<tr>
<td>6</td>
<td>NCI 449-1</td>
<td>3.5</td>
<td>Severe</td>
<td>VL</td>
<td>DKCI, c.1223C>T</td>
<td>p. T469K</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>7</td>
<td>Fludarabine, CSA/MMF</td>
<td>Dyspnoea,</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>NCI 297-2</td>
<td>16</td>
<td>Severe</td>
<td>VL</td>
<td>TERT, c.331C>G</td>
<td>p. A1211C</td>
<td>A</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>19</td>
<td>Fludarabine, CSA/MMF, MMF</td>
<td>Dyspnoea on exertion,</td>
</tr>
<tr>
<td>8</td>
<td>NCI 349-1</td>
<td>5.5</td>
<td>Severe</td>
<td>VL</td>
<td>TIN2, c.846G>A</td>
<td>p. R292H</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>5.7</td>
<td>Fludarabine, CSA/MMF</td>
<td>Dyspnoea,</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>NCI 421-1</td>
<td>4</td>
<td>Moderate</td>
<td>VL</td>
<td>TIN2, c.846G>A</td>
<td>p. R292H</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>5.7</td>
<td>Fludarabine, CSA/MMF</td>
<td>Hypoxia</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>NCI 425-1</td>
<td>9</td>
<td>Severe</td>
<td>VL</td>
<td>TIN2, c.846G>A</td>
<td>p. R292H</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>10.8</td>
<td>Fludarabine, CSA/MMF</td>
<td>Dyspnoea on exertion</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>NCI 438-1</td>
<td>1</td>
<td>Severe</td>
<td>VL</td>
<td>TIN2, c.846G>A</td>
<td>p. R292H</td>
<td>Aplastic anemia</td>
<td>HCT</td>
<td>1.5</td>
<td>Fludarabine, CSA/MMF</td>
<td>Chronic hypoxia</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The table provides detailed information on patients with aplastic anemia, their gene mutations, treatment, and clinical outcomes.
Pulmonary Arteriovenous Malformations (Pulmonary AVMs)
Causes shunting of blood – blood bypasses oxygen loading in the lung
Tests to Evaluate the Lungs

• Blood
 – pH, gas levels
• Pulmonary function testing
 – Spirometry, lung volumes, diffusion capacity
• Chest x-ray
• CT scan of the chest
• MRI of the chest
• Bronchoscopy
 – Lavage, washings, brushings
• Lung biopsy (bronchoscopy, surgical)
• V:Q scan
• Cardiac echocardiography
• Heart catheterization

Help identify shunts
Pulmonary Function Testing

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Predicted</th>
<th>Pre Drug Measured</th>
<th>Pre Drug % Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>4.26</td>
<td>3.35 <</td>
<td>79 <</td>
</tr>
<tr>
<td>FEV1</td>
<td>3.63</td>
<td>2.53 <</td>
<td>70 <</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>85</td>
<td>76</td>
<td>89</td>
</tr>
<tr>
<td>FEF25%</td>
<td></td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td>FEF50%</td>
<td></td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>FEF75%</td>
<td></td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>FEFmax</td>
<td>7.46</td>
<td>6.35</td>
<td>85</td>
</tr>
<tr>
<td>FEF25-75%</td>
<td>3.85</td>
<td>2.07 <</td>
<td>54 <</td>
</tr>
<tr>
<td>Pimax/MIP</td>
<td>-75.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEmax/MEP</td>
<td>112.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Volume
- Flow: 4 7/5/2017 12:57 PM
- Flow (L/s)
- PEF
- Volume (L)
Chest x-ray
Closer View of Interstitial Lung Disease
CT Scan of Chest
Pulmonary AVMs on Catheterization
Our Research

Sue Reynolds, PhD
Director

Cynthia Hill, BA, ALAT
Lung Stem/Progenitor Cells

Injury & Infection Activate Airway Epithelial Stem Cells

Shaykhiev R. Eur Respir J 2015;46(4):894-7
Conclusions

• Lung disease is an evolving complication of dyskeratosis congenita
 – Clinical evaluation
 • Comprehensive team with expertise in this area
 • Screening echo to assess for pulmonary AVMs
 • Heart catheterization may be needed
 – Collaborative research
 • Identify ways to diagnosis it early
 • Understand why lung disease develops
 • Develop therapies to prevent or treat lung disease
Acknowledgments

Sue Reynolds, PhD
Aimee Armstrong, MD
Kan Hor, MD
Stephen Druhan, MD
Cynthia Hill, BA, ALAT
Patrick McConnell, MD
Stephen Kirkby, MD
Hemalatha Rangarajan, MD
Almost Done With Me! ☺

don.hayes@nationwidechildrens.org
In Loving Memory (5-15-03 to 10-17-17)

"Fight lung disease we must."

NATIONWIDE CHILDREN'S THE OHIO STATE UNIVERSITY
When your child needs a hospital, everything matters. COLLEGE OF MEDICINE